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Current Grid 

Limited Market Control – Demands are Inelastic, No Storage 
~ 20% Energy Losses - Transmission,  Demand Shedding, and Wind Curtailment 

~ 70% Electricity from Coal – CO2 Emissions 



Next-Generation Grid 

Major Adoption of  Renewables -30%- 

All Players use Optimization – How to Coordinate Time-Scales? 
Elastic Demands, Distributed Generation and Storage, Real-Time Pricing 



Decision Making Structure and Optimization Tasks 

Unit Commitment: ISO, Daily, DC Flow, MILP 

Day-Ahead Bidding: GENCOs/Utilities, Daily, LP/QP 

Economic Dispatch: ISO, 5 Minutes, DC Flow, LP/QP 

Real-Time Bidding: GENCOs/Utilities, 5 Minutes, LP/QP 

Transmission/Generation Expansion: ISO, Yearly, MILP 

AC Power Flow: ISO, 1-2 Minutes, NLP 

State Estimation: ISO, 1-2 Minutes, QP/NLP 

Generation Control: GENCOs, Seconds, QP/NLP 

Voltage and Dynamic Stability: ISO, MilliSeconds, No Optimization 
Energy Management: Utilities/Consumers, Seconds/Minutes, LP/QP/NLP 

Planning 

Markets 

Control 



Supply Bids 

Clearing Prices 

GENCOs Utilities, Consumers 
Transmission 

ISO 
ON/OFF  

Power Levels 

Demand Bids 

Weather -Forcing- 

Dynamic & Uncertain Forcing Factors -Weather- Drive Markets 



Supply (Wind) and Elastic Demands Vary at Higher Frequencies 

Anticipating Forcing Factors is Critical  -Minimize Reserves- 
Longer Foresight Horizons and Faster Updates Needed 

Wind 
Ramps 



Interconnect Level Transactions - Key for High Efficiency and Lower Prices  

Transmission Network Expansion - Need Infrastructure to Enable Exchanges 
                                                           - Hydro, Wind, Geothermal, Solar, Eastern Demands 





Day-Ahead and Real-Time Market Clearing 
    Horizons of 1 to 36hr – MILP with O(103)  Integers & O(106)  Continuous – Time Constraints 

Key Extensions: Stochastic, AC Power Flow (MINLP), Gaming, Contigency 

Dynamics -Ramps- 

Network 

Cost Function 

Transmission/Generation Expansion     
   Horizons of 10 to 20yr – MILP with O(104) Integers & O(108) Continuous – Memory Constraints 



Real-Time Market Clearing  
  Sets Locational Marginal Prices (LMPs) in Interconnect 
  Solved Every 5 Minutes, 15 Minutes Foresight 

Benchmark System –Illinois-  1900 Buses, 2538 Lines, 870 Loads, and 261 Generators  
                                                    Daily Generation Cost ~ $O(108) 

Large-Scale LP/QP  - O(105-106) Continuous,  Core of Unit Commitment  



Effect of Foresight on Costs 

Savings Constrained by Time Resolution -Desired 5 min- 

Potential Savings of  $O(108)/Yr – Increase with Wind/Demand Variability 

LP Size  
105,000 Variables 

-1 hr/Step- 



Computational Performance – Linear Algebra and Warm-Starts  
    IPOPT- Symmetric KKT Matrix (MA57)  vs. CPLEX-Simplex – Basis Factorization/Updates 

Warm-Start Strategy - Construct Basis for Simplex -In Advance, With Forecast- 

No Warm-Start Warm-Start 

Largest Problem Solvable in 5 Minutes - 20 Hr Foresight, 240 Steps, 5 Min/Step, 1x106 Variables 

5 min 

Basis is “Robust” 



Uncertainty Handled Through Reserves -Currently 10% of Demand-Conservative & Expensive 

   1st Stage  
Current Demands and Wind 

2nd Stage  
Future Demands and Wind 

Main Bottlenecks : Number of 1st Stage Variables, Scenarios, Block Size 

Stochastic Optimization Can Make Reserves Adaptive - e.g., Day-Night Wind/Demands  



Barrier, Coarse Linear Algebra Decomposition, Distributed Memory 

•  Bottlenecks and Latency of Forming and Factorizing 
Schur Complement Avoided with Iterative Solver and 
Stochastic Preconditioner Petra & Anitescu, 2010a 

•  Problem with O(107) Variables (No Network) - 600 
Times Faster Than Serial on 1,000 cores 

•  Strong Scaling on 2,000 cores with O(108) Total 
Variables and O(105) First-Stage Variables 
ScaLAPACK Petra & Anitescu, 2010b 

•  However, Speed-ups not Enough for Use in MILP 

•  Key Questions: 
   - Fine-Grained Parallelism–Network, Multi-Core, BlueGene- 
   - Is Probability Distribution Correct?  
   - What if Scenario Generation is Expensive? 

 PIPS, IPOPT, OOPS: 

Fusion Cluster at Argonne 

PIPS: OOQP Gertz & Wright,  Schur Complement-Based, Dynamic Load Balancing 



 Major Advances in Meteorological Models (WRF) 
      Highly Detailed Phenomena - PDEs 
      High Complexity 4-D Fields (106- 108 State Variables)    

Model Reconciled to Measurements From Meteo Stations 

Data Assimilation Every 6-12 hours: 
      Optimization Based : 3-D Var Courtier, et.al. 1998, 4-D Var Navon  et.al., 2007 

      Simulation Based : Ensemble Kalman Filter Eversen, et.al. 1998    

http://www.meteomedia.com/ 
http://www.emc.ncep.noaa.gov/gmb/ens/ 

Is WRF Computationally Practical Enough for Market Operations?       



Current Time 

Data Assimilation (Least-Squares) Forecast (Sampling) 

Forming Covariance Matrix is Impractical -Size of State Space- Constantinescu, et.al. 2009 

      1) Use Only Most Relevant States (Adjoint Analysis) 

      2) Propagate Samples through WRF Model 

Making WRF Computationally Feasible 
Grid-Targeted Resolutions and Computational Resources 

Jazz Cluster at Argonne National Laboratory 



Validation Results (Illinois, 2006) with NOAA Data  

Temperature [oC] Wind Speed [m/s] 



Key: Probability Distribution and Number of Samples Must be Adapted in Real-Time 



Demand 

Thermal 

Wind 

-  WRF Forecasts are -In General- Accurate with Tight Uncertainty Bounds 

Aggregated Power Profiles -Validation with Real Data- 

 - Inference Analysis Reveals that 30 WRF Samples are Sufficient 
      Cost ~ $474,000, Upper Bound σ2 (1,082 $2), Lower Bound σ2 (1,656 $2) 

 - Excursions Do Occur: Probability Distribution of 3rd Day is Inaccurate! 
      Higher Frequency Data Assimilation (1 hour)? Missing Physics? 100m Sensors? 

Key Area: Real-Time Algorithms for Data Assimilation 



Collabora've	  Project:	  Argonne-‐Building	  IQ	  
“Proac've	  Energy	  Management	  for	  Building	  Systems”	  

Mike	  Zimmermann,	  Tom	  Celinski,	  Peter	  Dickinson	  (BIQ),	  and	  Victor	  M.	  Zavala	  (ANL)	  



Market 

U'lity	  	  
Max	  Profit	  

EMS	  
Max	  Profit	  

EMS	  
Max	  Profit	  

EMS	  
Max	  Profit	  

$ Price 

Demand 
Utility 
Supply 

Building 
Demand 

Current 
Price 

Future 
Price 

EMS Needs to Forecast & Optimize Demand as a Function of Weather and Market Prices 
Management of New Technologies (Batteries, PHEVs, Photovoltaic, Demand-Response) 

    ~ 50% of U.S. Energy Resources -Gas, Electricity- Go to HVAC 



Weather	  Condi'ons	  

Set-‐Points	  

Energy	  Demands	  

Zone	  Temperatures	  

Comfort	  Levels	  

•  Real-Time Optimal Control Problem with Machine Learning Model -NLP- 
Solved Every 10 Minutes, Foresight of 2 Hours 
Building Model Re-Trained Daily 
Machine Learning Key for Large-Scale and Cheap Deployment   

•  Trade-Off:  Comfort vs. Energy Demands  vs. CO2 emissions 

Machine	  Learning	  Model	  

Humidity,	  CO2	  

Inputs	  

Outputs	  

•  Exploit Sensor Information:  Occupant Tracking, Disaggregate Demands 

Building	  System	  



•  Solves Nonlinear Optimal Control Problem with Machine Learning Model 
Solved Every 10 Minutes, Forecast of 2 Hours 
Building Model Re-Trained Daily 
Machine Learning Modeling for Large-Scale and Cheap Deployment   

•  Trade-Off:  Human Comfort vs. Energy Cost  vs. CO2 emissions 

Occupant Tracking, TCS Building at Argonne Skow, Domagala, Cattlet. 2010 



Gaussian Process (GP) Modeling Rasmussen, et.al. 2001 

1. Input-Output Data Sets:   

2. Covariance Structure :   

3. Apply Maximum Likelihood:    

4. Posterior Distribution:    Forecast Mean 

Covariance 

Key Challenge: Handling Covariance Matrix -Large, Nonlinear, and Dense- 

Building	  System	  



Comfort	  Zone	  
Exploita'on	  

Fixed	  set-‐point	  

BuildingIQ EMS Implemented at Argonne’s TCS Building 
Expected Yearly Savings of ~30% on HVAC Energy – $O(105) 



ISO	  

GENCO	  1	  

GENCO	  2	  

GENCO	  G	  

U'lity	  1	  

U'lity	  2	  

U'lity	  C	  

- GENCOs and Utilities Bid in Day-Ahead and Real-Time Markets  
- ISO Clears Markets To Maximize Social Welfare 

$ Price 

Quantity 

Generator States are Propagated in Time – Ramps and Foresight Affect Market Stability 

Supply  
Function 

Generators 

Supply  
Function 
Utilities 

 Cleared Price 



Supply Function-Based Dynamic Game Models Kannan & Z., 2010 

  - Linear Complementarity Problem: Economic Dispatch (LP) + GENCOs (LP) 

Horizon 
Players 

Price 

Effect of Ramp Constraints on Market Equilibrium 



Identifying Non-Gaming Behavior 
     Some Players -Intentionally or Unintentionally- Bid Suboptimally 
     Introduces Noise in Equilibrium – Can be Inferred from Data 

Huge Potential for Dynamic Market Models  
       - Mechanistic Price Forecasting, Interconnect Level Transactions 
       - Fundamental -Market Stability- and Algorithmic Questions -Incomplete Gaming- 
       - Extensions to Integers Needed: Unit Commitment + GENCOs Problems, Interconnects 
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  Weather, Demands, and Generation Exhibit Complex Spatio-Temporal Correlations  

Correlations Must Be Captured For Efficient Forecasting  



Integration Uncertainty Quantification and Stochastic Optimization 
   - Forecast Probability Distribution is NOT in Closed-Form 
   - Generating Each Sample is Expensive : 50-100 Practical 

Cost Confidence Intervals 

How to Generate More Samples?   
   1) Sample Weights on Hyperplane                     and Compute  
   2) Solve Stochastic Problem with       Batches of Realizations        



Illinois Study -Wind Adoption 20%- 

Wind Power Profiles 


